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Abstract—Assessing photovoltaic module backsheet durability
is critical to increasing module lifetime. Laboratory-based accel-
erating testing has recently failed to predict large scale failures
of widely adopted polymeric materials. Additionally, there is a
growing concern on characterizing the non-uniformity of field
exposure. Therefore, data from field surveys are critical to assess
the performance of component lifetimes. Using a documented
field survey protocol, 19 field surveys were conducted. The focus
of this survey strategy is to investigate spatial continuity in
degradation modes. By combining field survey data with real-
time satellite weather data, stressor / response models have been
trained. Generalized additive Models (GAM) model was created
to predict the value of degradation based on measured predictors.
Two different GAM constructions were testing using different
implementations of basis splines. The model includes variables on
the environmental stressors of the system and the location of each
measurement in the PV mounting structure. The incorporation
of hierarchical structure into the models allowed for material
specific degradation rates, while maintaining the assumption of
a global trend. The model performed well with an adjusted R2

of 0.975 for yellowness index prediction.
Index Terms—Backsheet, Degradation, Spatio-temporal, Mod-

eling, Field Survey,

I. INTRODUCTION

To be cost effective, utility-scale power providers are reliant
on Photovoltaic (PV) module service lifetimes exceeding 20
years of operation in a variety of exposure environments. PV
backsheets are affected by multiple environmental stressors

This material is based upon work supported by the U.S. Department
of Energy’s Office of Energy Efficiency and Renewable Energy (EERE)
under Solar Energy Technologies Office (SETO) Agreement Number DE-
EE-0008748. The views expressed herein do not necessarily represent the
views of the U.S. Department of Energy or the United States Government.
This work made use of the Rider High Performance Computing Resource in
the Core Facility for Advanced Research Computing at Case Western Reserve
University.

and degrade due to synergistic effects in the field. The study
of outdoor backsheets degradation is necessary to understand
real-world PV failure and improve accelerated testing proto-
cols. However, current research on outdoor backsheet degra-
dation is much scarcer than that of PV cells or encapsulants
[1], [2].

Backsheets in installed PV modules experience various
synergistic stressors, including irradiance, temperature, hu-
midity, abrasion, and other factors. Ultraviolet (UV) light
reflected from the ground can cause chain scission and loss
of mechanical strength [3], [4]. The diurnal and seasonal
thermal cycles create thermal-mechanical stress, contributing
to backsheet failures [5]. The presence of moisture can also
have dramatic effects on the degradation of backsheet mate-
rials [6]–[11]. These stressors also vary spatially according
to array geometry, changes in ground albedo, and shading
due to external objects. It was found that the edge modules
experienced higher degradation rates, attributed to an increase
of rear-side irradiance [12], [13].

Field survey data has recently been used to illuminate effects
observed in long-term outdoor exposures. Measurements of
the color and gloss of PV modules after years of outdoor
exposure showed differential degradation patterns based on the
PV mounting structure [1]. Additionally, this observed trend
was modeled using generalized additive modeling (GAM),
resulting in an equation that predicted degradation patterns
across the surface of the PV backsheet based on its location
in the mounting structure [13]. It was found that the edges
of PV mounting systems experience faster rates of apparent
degradation than the modules located at the center. Moreover,
it was found that the distance from the ground was another
factor in the degradation rate. An improved GAM was devel-
oped using data from 14 individual field surveys. However,
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the model struggled to differentiate the synergistic effects of
climate stressors [14].

This study improves on past GAM modeling efforts with
a new hierarchical modeling framework, which allows for
pooled model coefficients. Hierarchical (Multilevel / Mixed
Effect) modeling has widely been used to model spatio-
temporal data in the fields of ecology, finanace, and real-estate
[15] [16] [17] [18] [19]. To better parse out the synergistic
effects of multiple climatic stressors, a field survey was
conducted where multiple backsheet brands and materials were
exposed under the same environment. This survey will allow
a comparison of the material-specific degradation modes that
are excited by the same levels of environmental stressors.

II. METHODOLOGY

A. Field Survey Protocol

A field survey protocol was defined to standardize the
measurement locations and the measurement types recorded to
produce a uniform data set. This protocol has been applied to
19 PV systems. The current protocol dictates that individual
rows of PV modules will be measured systematically, with
uniform separation of measurements along the length of the
row. It is recommended that a minimum of 12 modules should
be recorded for each row measured, but for long rows, the
number of modules should increase. Additionally, to observe
the ’edge effect’, additional modules are surveyed on the row
ends. Each module is measured in 6 locations across the
surface of its backsheet. Data is collected on the Yellowness
Index (ATSM E313), Gloss ( ASTM D523), and FTIR spectra
of every module surveyed without cleaning the module. The
exposure conditions of the field are also noted.

This study presents measurements of four different types
of air-side backsheet materials. Polyvinylidene diflouride
(PVDF), and Polyvinyl Fluoride (PVF) are fluoro-polymer
based films. Fluoroethylene vinyl ether (FEVE) is a spray type
fluoro-polymer coating applied to backsheet films. Polyethy-
lene naphthalate (PEN) is a non-fluoropolymer film.

B. Data

Weather data for PV sites was gathered using SolarGIS.
The data consisted of temperature, relative humidity, global
horizontal irradiance, diffuse horizontal irradiance, and wind
speed. Measurements were recorded at five-minute intervals
for up to four years. The climate data was obtained from
the closest available weather station and ingested into a high
performance computer. When available, weather data collected
at the specific PV installation is used.

After conducting a field survey, the instrument data is
processed through cleaning scripts that label and supplement
each observation with meta-data. After the data is cleaned, it
is ingested into Case Western’s High-Performance Computing
Cluster and stored.

C. Modeling

1) Inference By Eye: Inference by Eye is a statistical tech-
nique developed to quickly visualize and test for the statistical

significance at the 0.05 level, of both null hypothesis testing
and two sample t-tests [20]–[22]. With a 95% confidence
interval (CI), it can be used to test if a module has undergone
a change over time, such that the null hypothesis test fails
and the sample has undergone significant change at a 0.05
significance level. And it can be used to compare among
many samples, using a two sample t-test and 83.5% CIs,
that two samples significantly different from each other at the
0.05 significance level. The basic principle of this technique
relies on a simple 2-sample independent students t-test of the
difference between two means (p = 0.05 , t = 1.96). A more
in-depth discussion of inference by eye can be found in the
following paper by Wieser et al. [14].

2) Generalized Additive Modeling: To predict the values of
degradation, GAMs have been created to relate the observed
responses to real world stressors on the field survey data.
Smoothing splines have been integrated as the basis functions
for the spatial variability of the observed data. More informa-
tion on the principles of applying GAM to field survey data
can be found in Wieser et al. [14].

The hierarchical extension of a GAM allows for group-
specific variations in the overall trend of the model. Hierarchi-
cal models allow for flexibility in the fit parameters based on
the structure of the data. In particular, the hierarchical model
allows for different coefficients for each of the material types
in the study while maintaining the assumption that all the
observed responses have a shared global trend.

Two approaches to GAM modeling will be discussed. The
first approach uses the natural spline model as a regressor in
the GAM model (Equation 1), whereas the other approach
incorporates and penalizes the spline fitting into the model
(Equation 2). In other words, the first approach takes an exist-
ing predetermined spline function based off of the co-variate
as a variable in the model. The second approach models and
minimizes the variance in spline terms while determining the
coefficients for each term. The advantage of the second model
structure is its ability to capture the hierarchical differences
in the structure of the field data. The individual smoothing
splines are created as an ensemble of functions that can be
penalized through different constraints. For the purposes of
this analysis, each material will be considered its own group,
and the model will allow for individual smoothing parameters
for each material. This results in a model that acknowledges
a global shared trend for the spatial dependence of material
degradation, but allows material specific flexibility to account
for differential rates of degradation.

Along with the information gathered from the field surveys,
weather data is also being incorporated into the GAM model.
Years’ worth of time-series weather data are aggregated,
generating general statistics on the climate of each location.

The spatio model of degradation contains variables for the
position of the module in the row structure, Length (L) and
Depth (D) and interaction between material (Mi) and exposure
condition (Ej). The model change point locations a1 and a2
determine the position of the knots in the regression form
of the GAM. The temporal model includes the following
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parameters: time of contact wetness (CW), cumulative yearly
irradiance (IRR), time at elevated temperature (TAET), and
time (t).

The general form of the spatio- equation then can be
expressed as:

Y (L,D,M) = β0 + β1L+ β2L
2 + β3L

3 + β4(L− a1)

+ β5(L− a2) + β6D + β7D
2 + βM,E (1)

or

Y (L,D,M) = β0 + f(L) + f(D) + βM,E (2)

where f(L) and f(D) are spline terms defined as in
Equation 3.

f(X) =

Q∑
q=0

βq · bq(X) =

β0 + β1b1(X) + β2b2(X) + . . .+ βQbQ(X) (3)

With the general form of the temporal equation:

Y (CW, IRR, TAET, t) = β1(CW × t) + β2(IRR× t)

+ β3(TAET × t) + β4(Mi × t) (4)

The GAM creates all the components separately using
a linear combination of all the unique equations for each
variable.

Model validation was conducted using the Akaike Informa-
tion Criterion (AIC), which allows the comparison of GAMs
with different combinations of effects. The models were built
on subsetted data-sets with 80% of the data allocated to the
training of the model. Root Mean Squared Estimates (RMSE)
and Adj. R2 values were used to evaluate the model fit. Two
baseline models (linear and piece-wise) were developed to
evaluate the performance of the GAMs.

III. RESULTS / DISCUSSION

A. Spatial Modeling

GAMs were created using both approaches. The overall fit
of both models provided additional insight into the spatial
dependence of degradation. However, the natural spline re-
gression GAM struggled to capture the different mechanisms
of degradation. Fluoropolymer based materials are shown to
degrade to values of negative YI, whereas other backsheet ma-
terials tend to increase their YI. The natural spline model does
not differentiate between these mechanisms, and fits the edges
of the spatial function to be concave down (becoming more
negative), due to the presence of fluoropolymers. However,
the penalized smoothing GAM intrinsically captures group
specific effects and allows for different functional responses.
This allows the penalized smoothing GAM to differentiate
between materials that have different degradation responses.

TABLE I: Approximate Significance of the Penalized Splines

Term Material Est. Deg. of
Freedom

Ref. Deg. of
Freedom

Statistic P-Value

f(L) PVF 0.0002484 36 0.0000016 0.7527733
f(L) FEVE 0.8294896 39 0.0665848 0.0472572
f(L) PEN 22.9198381 26 7.9638536 <2 E -16
f(L) PVDF 1.0228291 39 0.0493353 0.1271306

f(D) PVF 2.2568605 8 0.5338434 0.0999844
f(D) FEVE 0.0114537 7 0.0030046 <2 E -16
f(D) PEN 3.0013728 6 5.6328328 <2 E -16
f(D) PVDF 0.9892293 7 0.2419582 0.0076261

Therefore, the penalized smoothing GAM was able to better
model the spatial component of the degradation response (Fig-
ure 2). However, there are certain cases where the penalization
of the smoothing splines resulted in the loss of information
of high frequency spatial dependence. While the penalized
smoothing splines fit the overall shape of the data, the natural
spline’s knots allowed for increased flexibility to capture more
of the spatial variance of the observed signal (Figure 1). The
resultant smoothing splines from the penalized GAM model
can be used to investigate material specific spatial trends. It
was shown that the different materials exhibit varying degrees
of spatial dependence. The polymers PEN and FEVE where
shown to have a strong spatial dependence, where as the
fluoro-polymer films did not have a significant dependence
on the spatial location of measurement (Table I). A lack of
spatial dependence indicates that the material is less sensitive
to micro-climatic effects.

The location of the row in the overall field was also analyzed
to determine if the row location had a significant effect
on the level of degradation observed. The models include
separate intercept terms for the different combinations of
material type and row exposure conditions. The row exposure
of ”Fully Shaded” was used as the base case for the model.
Interaction terms without data where excluded from the table.
Both GAM models found significant effects in the interaction
between row exposure and material type. PEN and PVF based
backsheets showed varying levels of degradation for different
row locations. Frontside unshaded rows exhibited less severe
levels of degradation compared to the fully shaded rows.

B. Temporal Modeling

The spatial component of the GAMs captures the
anisotropic degradation of backsheet materials. This allows
the temporal components to be modeled by removing the
variance due to the differences in local exposure conditions.
The temporal coefficients can be divided into climatic stressors
and material aging effects.

Both GAMs found significant contributions between the
interaction terms of climatic stressor and length of exposure
(Table III). The annual total dose of irradiance is the strongest
contributor to the observed degradation. The other climatic
stressor terms had smaller contributions to the overall level
of degradation observed. The presence of dew formation and
exposure to elevated temperature (T <35◦C) were found to
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TABLE II: Significance of interaction between row exposure environment and material type, as compared to the base case of
”Fully Shaded”

Model Term Material Row Environment Estimate Std. Error t value P-Value

N
at

ur
al

Sp
lin

e
G

A
M βM,E PVF Frontside Unshaded 1.314e+00 1.181e-01 11.124 <2e-16

βM,E FEVE Frontside Unshaded -2.959e-02 1.717e-01 -0.250 0.803
βM,E PEN Frontside Unshaded -5.272e-01 1.238e-01 -4.285 1.87e-05
βM,E PVDF Frontside Unshaded -4.897e-02 8.992e-02 0.247 0.805
βM,E FEVE Rearside Unshaded 9.443e-02 1.716e-01 0.507 0.612
βM,E PEN Rearside Unshaded -2.124e+00 1.568e-01 -13.551 <2e-16
βM,E PVDF Rearside Unshaded -1.367e-01 8.933e-02 -0.712 0.476
βM,E PVF Tracker -1.364e+00 1.177e-01 -11.581 <2e-16

Pe
na

liz
ed

Sm
oo

th
G

A
M βM,E PVF Frontside Unshaded 1.088e+00 6.354e-02 17.123 <2e-16

βM,E FEVE Frontside Unshaded -2.862e-02 1.397e-01 -0.231 0.817439
βM,E PEN Frontside Unshaded -4.043e-01 1.057e-01 -3.823 0.000134
βM,E PVDF Frontside Unshaded 1.486e-02 7.316e-02 0.308 0.757991
βM,E FEVE Rearside Unshaded 8.903e-02 1.397e-01 0.644 0.519766
βM,E PEN Rearside Unshaded -5.405e-01 1.578e-01 -3.430 0.000610
βM,E PVDF Rearside Unshaded -4.385e-02 7.259e-02 -0.476 0.633842
βM,E PVF Tracker -1.136e+00 6.305e-02 -18.055 <2e-16

Fig. 1: Results of predicting the trained model on the SS-15
Sites. This model was fitted using an 80% training set.

TABLE III: Interaction terms between length of exposure and
climatic stressor.

Model Term Stressor Estimate Std. Error T-Value P-Value

N
S

G
A

M β1 CW -3.798e-03 6.938e-04 -5.475 4.65e-08
β2 IRR 1.714e-06 9.941e-08 17.241 <2e-16
β3 TAET -4.787e-04 7.794e-05 -6.143 8.92e-10

PS
G

A
M β1 CW -8.479e-03 4.882e-04 -17.367 <2e-16

β2 IRR 2.309e-06 7.099e-08 32.525 <2e-16
β3 TAET -8.563e-04 5.565e-05 -15.388 <2e-16

decrease the observed values of degradation. This could relate
to the formation of differently colored degradation products.
However, the observed effects could be the result of the GAM
overfitting some of the variance of the material degradation
behaviors.

Material specific degradation rates were also modeled using

TABLE IV: Interaction terms between length of exposure
and material type. These values can be used to determine the
types of degradation products formed and susceptibility of the
material to exposure.

Model Term Material Estimate Std. Error t-Value P-Value
N

S
G

A
M β4 PVF -4.939e-01 1.867e-02 -26.454 <2e-16

β4 FEVE -8.597e-01 4.738e-02 -18.147 <2e-16
β4 PEN 2.023e+00 2.338e-02 86.523 <2e-16
β4 PVDF -5.599e-01 4.119e-02 -13.592 <2e-16

PS
G

A
M β4 PVF -4.738e-01 2.683e-02 -17.656 <2e-16

β4 FEVE -6.791e-01 6.710e-02 -10.120 <2e-16
β4 PEN 2.216e+00 3.199e-02 69.266 <2e-16
β4 PVDF -7.864e-01 3.428e-02 -22.938 <2e-16

the temporal equation. Over the length of the exposure the
fluoro-polymer based materials tend to decrease in the value of
YI (turning blue). This observed response to exposure is well
captured by both GAMs. The magnitude of these coefficients
also provides information on the susceptibility of a material
to the formation of degradation products. The fluoro-polymer
based backsheets have low coefficients which is related to
their overall stability under outdoor exposure. PEN based
backsheets exhibited the highest rates of the formation of
degradation products IV.

C. Model Fit

Overall the models fit the highly variable data well. The
spline terms were able to capture some of the spatial variability
in the data. The penalized smoothing spline exhibited lower
RMSE and higher adj.R2. The increase of flexibility of the
penalized smoothing model allowed for a better model of the
spatial variance of the data. There was little difference between
the RMSE values of the testing and training data-sets for both
models, indicating that they did not over-fit the training data-
set. Although not discussed, a simple linear model and a piece-
wise model were used as baseline models. The model accuracy
parameters can be found in Table V.
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Fig. 2: Results of predicting the trained model on the SS-16-1 Site. This model was fitted using a 80% training set.

Fig. 3: Results of predicting the trained model on the SS-16-2
Site. This model was fitted using a 80% training set.

TABLE V: Model Accuracy Parameters

Model adjR2 RMSE Training RMSE Testing

Linear Model 0.834 2.35 3.35
Piecewise Model 0.883 2.12 2.34
Natural Spline 0.962 1.675 1.626
Penalized Smoothing 0.975 1.339 1.355

IV. CONCLUSIONS

GAMs present a highly flexible framework to analyze hier-
archically structure problems. Through careful survey design, a
multitude of different exposure related degradation modes can
be quantified. Interaction terms between length of exposure
and climatic stressor allow for a deeper understanding of the
pertinent climatic variables that affect material longevity. In
addition, the stability of materials during outdoor exposure
can be directly compared. The sensitivity to changes in micro-
climatic exposure can be understood through the contribution
of smoothing splines. It was found that the fluoro-polymer
based backsheets were the least susceptible to degradation and
the least sensitive to changes in environment.
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